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Confined Rayleigh-Taylor instability
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The interface between two stratified layers of fluids is stable when the denser fluid is on the
bottom. For the inverted situation, with the denser fluid on top, the tug of gravity acts to lower
the potential energy by upending the layers. This is the familiar Rayleigh-Taylor instability that
is ubiquitous across scales, from milk poured into coffee to exploding supernovae [1,2]. However,
setting up the unstable situation with clean initial conditions can be experimentally challenging
[3,4]. Here, to achieve controlled initial conditions, we take advantage of the inherent stratification
of fluids formed by a different instability, the viscous fingering of miscible fluids in a confined
geometry [5–7].

We use a horizontal Hele-Shaw geometry consisting of two circular glass plates of diameter
25 cm, separated by a thin uniform gap b ∼ 1 mm [8]. After filling the space between the parallel
plates with a viscous outer fluid, a lower-viscosity inner fluid is injected into this gap through a hole
in the center of one plate. Because of the unfavorable viscosity contrast, local pressure gradients
amplify small perturbations along the fluid interface creating long, wide fingers [5]. If the two fluids
are miscible, the displacing inner fluid creates a tongue of three stratified layers in which the inner
fluid is sandwiched between two layers of the outer one [9–11]. If the fluid densities are not identical,
one of the two fluid interfaces will necessarily be density inverted, a situation ripe for the formation
of Rayleigh-Taylor plumes.

Figure 1 shows a top view of one quadrant of the plates after a less-viscous inner fluid has been
injected into a dyed outer fluid with which it is miscible. This forms the canonical viscous-fingering
pattern with three vertically stratified layers inside the gap. Throughout the region displaced by the
inner fluid, one can see intricate dark and bright cellular patterns due to the formation of plumes,
sharp up- or downwelling of the interface. The two fluids are sufficiently viscous so that these
Rayleigh-Taylor plumes occur only after the fluid injection has stopped. Figure 2 shows images
from a confocal-microscope movie of a single plume as it grows. The plumes exhibit the classic
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FIG. 1. Close-up image of the characteristic cellular patterns created by Rayleigh-Taylor plumes on a
density-inverted stratified layer of fluids. The stratification is achieved during the formation of larger-scale vis-
cous fingers of two miscible fluids. Plumes of the denser fluid sink and form convection rolls as they encounter
the lower glass plate. The returning fluid, as it displaces the upper lighter layer of fluid, produces the thin
bright lines visible inside the cells in the regions between the dark lines. The image is taken on a BW Prosilica
GX3300 camera and lens with f /32 aperture. The original grayscale image has been colored to accentuate the
finer details of the emergent pattern. The scale bar is 1 cm. The viscosity ratio between the fluids is ηin/ηout ≈
0.03 and the density difference is �ρ ≈ 0.007 g/ml. https://doi.org/10.1103/APS.DFD.2021.GFM.P0041.

Rayleigh-Taylor mushroom shape as they develop. At later times, diffusion between the two fluids
erodes the sharp interfacial structure in the plumes, eventually causing the cellular pattern seen in
Fig. 1 to fade.

By adjusting the control parameters (the plate spacing b and the densities and viscosities of
the two fluids), we characterize the Rayleigh-Taylor instability and identify different regimes
of confinement. We use various concentrations of glycerol-water mixtures to create a range of
density contrasts between the pairs of fluids. The fraction of the gap occupied by each fluid can
be determined from the measured transmitted light intensity. Using a two-dimensional Fourier
transform of the patterns, we extract the dominant length scale, the instability wavelength λ. By
varying the thickness of the gap between the plates b, we find that the instability is completely
suppressed below a critical gap bc ∼ (ηD/g�ρ)1/3, where g is the earth’s gravitational constant.
As b is increased, the instability changes from this mass-diffusion-dominated regime of stability,
through an intermediate regime where the dynamics are set strictly by the gap λ ∼ b, to the limit
where the boundaries no longer affect the dynamics. In this last regime, the instability is governed
by a competition between momentum diffusion and the unstable density gradient as predicted by
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FIG. 2. Growth of a Rayleigh-Taylor plume in the thin gap of thickness b = 1.14 mm, imaged using a
Caliber I.D. RS-G4 confocal microscope. To capture the dynamics of the instability we are limited to the
number of z slices we can acquire, here 31. It is this reduced information in z that lends a pixelated quality to
the image. The height of the images corresponds to the gap thickness b. The images are taken at times, from left
to right, t = 0, 330, 750, 1590 s. The viscosities of the darker outer and the brighter inner fluids are ηout = 610
cP and ηin = 101 cP, respectively, and the effective interfluid diffusion coefficient is D = 0.52 × 10−6 cm2/s.
The density difference between the two fluids is �ρ = 0.031 g/cm3. Images in this figure are adapted from
the original work [12]. https://doi.org/10.1103/APS.DFD.2021.GFM.P0041.

theory in the unconstrained limit λ ∼ (νD/gA)1/3, where ν = η/ρ is the kinematic viscosity and
A = �ρ/

∑
i ρi is the nondimensional density contrast [12].

In our experiment, the Rayleigh-Taylor instability takes place on the back of the structure formed
by the viscous-fingering instability of miscible fluids. We use one instability to probe another. The
ephemeral appearance of internal features all across the horizontal interfaces can be easy to miss:
They are visible only for a short time. They are literally the elegant shadows, the Platonic form if you
will [13], of Rayleigh-Taylor plumes, one of the most fundamental of hydrodynamic instabilities.

This work made use of the shared facilities at the University of Chicago Materials Research
Science and Engineering Center.

[1] J. S. Wettlaufer, The universe in a cup of coffee, Phys. Today 64(5), 66 (2011).
[2] W. H. Cabot and A. W. Cook, Reynolds number effects on Rayleigh-Taylor instability with possible

implications for type-Ia supernovae, Nat. Phys. 2, 562 (2006).
[3] M. S. Roberts and J. W. Jacobs, The effects of forced small-wavelength, finite-bandwidth initial perturba-

tions and miscibility on the turbulent Rayleigh-Taylor instability, J. Fluid Mech. 787, 50 (2015).
[4] A. Aubertin, G. Gauthier, J. Martin, D. Salin, and L. Talon, Miscible viscous fingering in microgravity,

Phys. Fluids 21, 054107 (2009).
[5] P. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing

a more viscous liquid, Proc. R. Soc. London Ser. A 245, 312 (1958).
[6] L. Paterson, Fingering with miscible fluids in a Hele Shaw cell, Phys. Fluids 28, 26 (1985).
[7] F. Haudin, L. A. Riolfo, B. Knaepen, G. M. Homsy, and A. de Wit, Experimental study of a buoyancy-

driven instability of a miscible horizontal displacement in a Hele-Shaw cell, Phys. Fluids 26, 044102
(2014).

[8] M. R. Wilson, Flow geometry controls viscous fingering, Phys. Today 65(10), 15 (2012).
[9] E. Lajeunesse, J. Martin, N. Rakotomalala, and D. Salin, 3D Instability of Miscible Displacements in a

Hele-Shaw Cell, Phys. Rev. Lett. 79, 5254 (1997).
[10] I. Bischofberger, R. Ramachandran, and S. R. Nagel, Fingering versus stability in the limit of zero

interfacial tension, Nat. Commun. 5, 5265 (2014).
[11] T. E. Videbæk, Delayed onset and the transition to late time growth in viscous fingering, Phys. Rev. Fluids

5, 123901 (2020).

110504-3

https://doi.org/10.1103/APS.DFD.2021.GFM.P0041
https://doi.org/10.1063/1.3592018
https://doi.org/10.1038/nphys361
https://doi.org/10.1017/jfm.2015.599
https://doi.org/10.1063/1.3134662
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1063/1.865195
https://doi.org/10.1063/1.4870651
https://doi.org/10.1063/PT.3.1737
https://doi.org/10.1103/PhysRevLett.79.5254
https://doi.org/10.1038/ncomms6265
https://doi.org/10.1103/PhysRevFluids.5.123901


SAMAR ALQATARI et al.

[12] S. Alqatari, T. E. Videbæk, S. R. Nagel, A. E. Hosoi, and I. Bischofberger, Confinement-induced stabi-
lization of the Rayleigh-Taylor instability and transition to the unconfined limit, Sci. Adv. 6, eabd6605
(2020).

[13] S. R. Nagel, Shadows and ephemera, Crit. Inq. 28, 23 (2001).

110504-4

https://doi.org/10.1126/sciadv.abd6605
https://doi.org/10.1086/449031

