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Lyotropic chromonic liquid crystals are water-based materials
composed of self-assembled cylindrical aggregates. Their behav-
ior under flow is poorly understood, and quantitatively resolving
the optical retardance of the flowing liquid crystal has so far been
limited by the imaging speed of current polarization-resolved
imaging techniques. Here, we employ a single-shot quantitative
polarization imaging method, termed polarized shearing inter-
ference microscopy, to quantify the spatial distribution and the
dynamics of the structures emerging in nematic disodium cro-
moglycate solutions in a microfluidic channel. We show that
pure-twist disclination loops nucleate in the bulk flow over a
range of shear rates. These loops are elongated in the flow direc-
tion and exhibit a constant aspect ratio that is governed by
the nonnegligible splay-bend anisotropy at the loop boundary.
The size of the loops is set by the balance between nucleation
forces and annihilation forces acting on the disclination. The
fluctuations of the pure-twist disclination loops reflect the tum-
bling character of nematic disodium cromoglycate. Our study,
including experiment, simulation, and scaling analysis, provides
a comprehensive understanding of the structure and dynamics
of pressure-driven lyotropic chromonic liquid crystals and might
open new routes for using these materials to control assem-
bly and flow of biological systems or particles in microfluidic
devices.

lyotropic chromonic liquid crystals | pressure-driven flow of nematics |
topological defects | pure-twist disclination loops | polarized shearing
interference microscopy

Lyotropic chromonic liquid crystals (LCLCs) are aqueous dis-
persions of organic disk-like molecules that self-assemble

into cylindrical aggregates, which form nematic or columnar
liquid crystal phases under appropriate conditions of concen-
tration and temperature (1–6). These materials have gained
increasing attention in both fundamental and applied research
over the past decade, due to their distinct structural prop-
erties and biocompatibility (4, 7–14). Used as a replacement
for isotropic fluids in microfluidic devices, nematic LCLCs
have been employed to control the behavior of bacteria and
colloids (13, 15–20).

Nematic liquid crystals form topological defects under flow,
which gives rise to complex dynamical structures that have been
extensively studied in thermotropic liquid crystals (TLCs) and
liquid crystal polymers (LCPs) (21–29). In contrast to lyotropic
liquid crystals that are dispersed in a solvent and whose phase
can be tuned by either concentration or temperature, TLCs
do not need a solvent to possess a liquid-crystalline state and
their phase depends only on temperature (30). Most TLCs are
shear-aligned nematics, in which the director evolves toward an
equilibrium out-of-plane polar angle. Defects nucleate beyond
a critical Ericksen number due to the irreconcilable alignment
of the directors from surface anchoring and shear alignment in
the bulk flow (24, 31–33). With an increase in shear rate, the
defect type can transition from π-walls (domain walls that sep-
arate regions whose director orientation differs by an angle of π)

to ordered disclinations and to a disordered chaotic regime (34).
Recent efforts have aimed to tune and control the defect struc-
tures by understanding the relation between the selection of
topological defect types and the flow field in flowing TLCs.
Strategies to do so include tuning the geometry of microfluidic
channels, inducing defect nucleation through the introduction
of isotropic phases or designing inhomogeneities in the surface
anchoring (35–39). LCPs are typically tumbling nematics for
which α2α3 < 0, where α2 and α3 are the Leslie viscosities. This
leads to a nonzero viscous torque for any orientation of the direc-
tor, which allows the director to rotate in the shear plane (22, 29,
30, 40). The tumbling character of LCPs facilitates the nucleation
of singular topological defects (22, 40). Moreover, the molecu-
lar rotational relaxation times of LCPs are longer than those of
TLCs, and they can exceed the timescales imposed by the shear
rate. As a result, the rheological behavior of LCPs is governed
not only by spatial gradients of the director field from the Frank
elasticity, but also by changes in the molecular order parame-
ter (25, 41–43). With increasing shear rate, topological defects in
LCPs have been shown to transition from disclinations to rolling
cells and to worm-like patterns (25, 26, 43).

Topological defects occurring in the flow of nematic LCLCs
have so far received much more limited attention (44, 45). At
rest, LCLCs exhibit unique properties distinct from those of
TLCs and LCPs (1, 2, 4–6, 44). In particular, LCLCs have sig-
nificant elastic anisotropy compared to TLCs; the twist Frank
elastic constant, K2, is much smaller than the splay and bend
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Frank elastic constants, K1 and K3. The resulting relative ease
with which twist deformations can occur can lead to a sponta-
neous symmetry breaking and the emergence of chiral structures
in static LCLCs under spatial confinement, despite the achiral
nature of the molecules (4, 46–51). When driven out of equilib-
rium by an imposed flow, the average director field of LCLCs has
been reported to align predominantly along the shear direction
under strong shear but to reorient to an alignment perpendic-
ular to the shear direction below a critical shear rate (52–54).
A recent study has revealed a variety of complex textures that
emerge in simple shear flow in the nematic LCLC disodium
cromoglycate (DSCG) (44). The tumbling nature of this liq-
uid crystal leads to enhanced sensitivity to shear rate. At shear
rates γ̇ < 1 s−1, the director realigns perpendicular to the flow
direction adapting a so-called log-rolling state characteristic of
tumbling nematics. For 1 s−1 < γ̇ < 10 s−1, polydomain textures
form due to the nucleation of pure-twist disclination loops, for
which the rotation vector is parallel to the loop normal, and
mixed wedge-twist disclination loops, for which the rotation vec-
tor is perpendicular to the loop normal (44, 55). Above γ̇ >
10 s−1, the disclination loops gradually transform into periodic
stripes in which the director aligns predominantly along the flow
direction (44).

Here, we report on the structure and dynamics of topolog-
ical defects occurring in the pressure-driven flow of nematic
DSCG. A quantitative evaluation of such dynamics has so
far remained challenging, in particular for fast flow veloci-
ties, due to the slow image acquisition rate of current quan-
titative polarization-resolved imaging techniques. Quantitative
polarization imaging traditionally relies on three commonly
used techniques: fluorescence confocal polarization microscopy,
polarizing optical microscopy, and LC-Polscope imaging. Fluo-
rescence confocal polarization microscopy can provide accurate
maps of birefringence and orientation angle, but the fluores-
cent labeling may perturb the flow properties (56). Polariz-
ing optical microscopy requires a mechanical rotation of the
polarizers and multiple measurements, which severely limits
the imaging speed. LC-Polscope, an extension of conventional
polarization optical microscopy, utilizes liquid crystal universal
compensators to replace the compensator used in conventional
polarization microscopes (57). This leads to an enhanced imag-
ing speed and better compensation for polarization artifacts
of the optical system. The need for multiple measurements to
quantify retardance, however, still limits the acquisition rate of
LC-Polscopes.

We overcome these challenges by using a single-shot quantita-
tive polarization microscopy technique, termed polarized shear-
ing interference microscopy (PSIM). PSIM combines circular
polarization light excitation with off-axis shearing interferome-
try detection. Using a custom polarization retrieval algorithm,
we achieve single-shot mapping of the retardance, which allows
us to reach imaging speeds that are limited only by the camera
frame rate while preserving a large field-of-view and micrometer
spatial resolution. We provide a brief discussion of the optical
design of PSIM in Materials and Methods; further details of the
measurement accuracy and imaging performance of PSIM are
reported in ref. 58.

Using a combination of experiments, numerical simulations
and scaling analysis, we show that in the pressure-driven flow
of nematic DSCG solutions in a microfluidic channel, pure-
twist disclination loops emerge for a certain range of shear
rates. These loops are elongated in the flow with a fixed aspect
ratio. We demonstrate that the disclination loops nucleate at the
boundary between regions where the director aligns predomi-
nantly along the flow direction close to the channel walls and
regions where the director aligns predominantly perpendicular
to the flow direction in the center of the channel. The large elas-
tic stresses of the director gradient at the boundary are then

released by the formation of disclination loops. We show that
both the characteristic size and the fluctuations of the pure-twist
disclination loops can be tuned by controlling the flow rate.

Results and Discussion
Emerging Structures in Pressure-Driven Flow of Nematic DSCG Solu-
tions. We inject an aqueous solution of 13 wt% DSCG into
a rectangular microfluidic channel of length l = 50 mm, width
w = 15 mm, and thickness b = 6.5± 1 µm. At this concentra-
tion, DSCG is in the nematic phase at room temperature T =
22.5± 0.5 ◦C (59, 60). The optical birefringence of 13 wt%
DSCG at rest, ∆n =ne−no, is −0.015 at a wavelength λw =
633 nm, where ne and no are the extraordinary and ordinary
refractive indices (61). The corresponding maximum retardance,
Γmax = 2π

λw
∆nb, is 0.98± 0.15 rad. The liquid crystal is initially

planar aligned along the direction of the flow (Materials and
Methods). The flow is induced by injecting DSCG solutions at
a volumetric flow rate q , ranging from q = 0.07–25 µL/min,
controlled by a syringe pump (Harvard PHD 2000). The corre-
sponding Ericksen numbers Er = η2γ̇b

2

K2
vary from 306 to 109,267,

where Er characterizes the relative importance of the viscous
forces to the elastic forces. Here, η2 is the twist viscosity, K2 is the
twist Frank elastic constant, and γ̇= q/(wb2) is the average shear
rate (5, 59).

Distinct structures emerge in the material upon the onset of
the pressure-driven flow, as shown in the snapshots in Fig. 1A,
which are imaged in polarizing optical microscopy with a static
full-wave-plate optical compensator (560 nm) with the slow axis
oriented at 45◦ to the crossed polarizers and in the direction
parallel to the flow. Orange colors indicate that the director
is parallel to the flow direction (x direction), and blue colors
indicate that the director is perpendicular to the flow direction
(61). At low flow rate, DSCG is preferentially aligned perpen-
dicular to the flow, adopting a log-rolling state with in-plane
orientation angle ϕ= 90◦, even though before the onset of flow
the director is parallel to the flow direction ϕ= 0◦ (Fig. 1B).
This realignment of the director is a consequence of the tum-
bling character of DSCG and the significant anisotropy in the
splay Frank elastic constant K1 and twist Frank elastic constant
K2, where K1/K2≈ 10; the director reorients by a twist defor-
mation toward the y axis, instead of deforming in the shear
plane, which would involve splay deformations (44, 62). With an
increase in flow rate, domains appear where the director increas-
ingly aligns in the direction of the flow. The characteristic size
of these domains becomes systematically smaller with increasing
flow rate.

To quantify these structures, we use PSIM to obtain a map
of the effective optical retardance, as shown in Fig. 1C where
the colors represent the value of the optical retardance averaged
over the thickness of the channel (z direction). We determine
the characteristic size of the domains of varying retardance by
calculating the normalized two-dimensional (2D) spatial auto-
covariance in the x and y directions, Cx and Cy , as shown in
Fig. 2A (see SI Appendix for details) (63). The observed decrease
in domain size with increasing flow rate is reflected in a decay
of the autocovariance at increasingly smaller ∆x and ∆y , which
denote the shift in the x and y directions, respectively. For the
two lowest and the highest flow rates probed, Cx and Cy exhibit
a two-step decay suggesting a coexistence of structures of two
characteristic sizes. We use a double compressed exponential
fit to access the characteristic length scales Lx1 , Lx2 , Ly1 , and
Ly2 , characterizing the average sizes of structures along the x
and y directions. For the intermediate range of flow rates, we
fit Cx and Cy with a single compressed exponential function,
which yields Lx and Ly . Details on the fits and fit parameters
are provided in SI Appendix, text and Table S1. Remarkably,
Lx and Ly decrease monotonically with the average shear rate
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Fig. 1. Flow-induced structures in nematic DSCG solutions. (A) Structures observed in polarizing optical microscopy for (from Left to Right):
q = 0.07 µL/min, 0.2 µL/min, 0.5 µL/min, and 3 µL/min, using a full-wave-plate optical compensator with its slow axis, g, aligned parallel to the flow
direction. The flow is in the x direction; the height of the microfluidic channel is in the z direction. A denotes the analyzer and P denotes the polar-
izer. (B) Schematic of the director orientation. ne is the extraordinary refractive index; no is the ordinary refractive index. The in-plane orientation angle
(azimuthal angle) and out-of-plane orientation angle (polar angle) are ϕ and θ. (C) Retardance maps obtained from PSIM images for (from Left to Right):
q = 0.07 µL/min, 0.2 µL/min, 0.5 µL/min, 3 µL/min, and 25 µL/min. The color represents the optical retardance. Scale bars: A and C, 50 µm.

for 4 s−1 < γ̇ < 500 s−1, as displayed in Fig. 2B. The average
characteristic size, defined as L=

√
LxLy , exhibits a power-law

dependence with the shear rate, L∝ γ̇−0.19. The domains are
elongated in the flow direction, with an approximately constant
aspect ratio Lx/Ly = 1.8 ± 0.3, as shown in Fig. 2C. A decrease
or an increase in shear rate leads to different characteristics of
the domain sizes and the aspect ratio. We focus our discussion
on the intermediate range of shear rates.

Structures Represent Pure-Twist Disclination Loops. To identify the
nature of the structures, we need to understand the observed
changes in the optical retardance, which could be attributed to
three possible effects: 1) changes of the out-of-plane orienta-
tion angle θ, 2) changes of the order parameter at topological
defects, or 3) twist deformations along the z direction (44). To
reveal the dominant effect leading to the observed retardance

and the nature of the structures formed in DSCG solutions, we
perform hydrodynamic simulations of tumbling nematic liquid
crystals using a hybrid lattice Boltzmann method, which allows
us to access the director field for Ericksen numbers Er = η2γ̇b

2

K2

varying from 579 to 8,214, a range which overlaps with the lower
flow rates probed in the experiments. At Er< 2,480, the directors
are predominantly aligned perpendicular to the flow direction
(see SI Appendix, text and Fig. S1 for details). With increasing Er,
the directors gradually reorient toward the flow direction. Discli-
nation loops nucleate in the flow, shown as blue lines denoting
isosurfaces of order parameter 0.35 in Fig. 3A for Er = 7,438,
where the dark rods denote the director field in the plane of the
loop. To link the simulations to the experiments, we calculate the
effective optical retardance averaged over the channel thickness,
as shown in Fig. 3B (SI Appendix). This reveals that the low retar-
dance regions correspond to disclination loops. The majority of
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Fig. 2. Characteristic size of structures in flowing DSCG solutions controlled by average shear rate. (A) Normalized 2D spatial autocovariance in the x direc-
tion (Top) and in the y direction (Bottom), for different flow rates q. The solid lines denote compressed single or double exponential fits. (B) Characteristic
domain sizes versus average shear rate γ̇. Along the x direction for intermediate average flow rates, Lx (�), and for low and high average flow rates, Lx1
(�), Lx2 (×); along the y direction for intermediate flow rates, Ly (N), and for low and high flow rates, Ly1 (4), Ly2 (+); and the average characteristic size

L =
√

LxLy (•). The black line denotes L ∝ γ̇
−0.19. (C) Aspect ratio Lx/Ly (•) for intermediate average flow rates, and Lx1/Ly1 (◦) and Lx2/Ly2 (×) for low and

high average flow rates. The black line indicates Lx/Ly ≈
√

K3/K1 = 1.9. In B and C, some of the error bars are smaller than the symbols.
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Fig. 3. Simulations of the director field in pressure-driven flow for Er = 7,438. (A) Top view of a disclination loop (blue isosurface of order parameter 0.35).
The loop is located in the xy plane. The dark rods denote the directors in the plane of the disclination loop. The color bar denotes the value of the scalar
order parameter. The scale bar corresponds to 3 µm in the experiment. (B) Map of the optical retardance averaged along the z axis and determined from
the director field. (C) Structure of a pure-twist disclination loop (blue isosurface). The arrows indicate the local buildup of the twist distortion. Scale bar:
2 µm. (D) Probability distribution of the twist angle β extracted from ∼100 loops in the simulations. β is the angle between the rotation vector Ω and the
local tangent vector t of a disclination loop (Left Inset). β is close to π/2, which reveals the prevalence of twist winding. (Right Inset) The coloring of the
disclination loop indicates the twist angle β. (E) Cross-section along the flow direction. The directors align perpendicular to the flow direction in the center
of the channel and parallel to the flow direction near the channel walls. The defects predominantly nucleate at the interface between these two regions.
Scale bar: 2 µm. (F) Schematics indicating the log-rolling layer (γ̇ < γ̇c), the layers aligned in the flow direction (γ̇ > γ̇c), and the location of defects. The
red arrows schematically represent the velocity profile; the green arrows represent the shear rate profile γ̇.

the disclination loops are topologically neutral pure-twist discli-
nation loops, where the rotation vector is parallel to the normal
direction of the loop (55), as shown in Fig. 3C.

We can rationalize the formation of pure-twist discli-
nation loops by considering the elastic powers of splay,
twist, and bend deformations, which can be expressed as
Psplay =

∫
Λ
dΛ(∇· n)2, Ptwist =

∫
Λ
dΛ(n ·∇× n)2, and Pbend =∫

Λ
dΛ(n×∇× n)2, where Λ is a control volume. The simula-

tions indeed show that Ptwist is larger than the powers associated
with splay and bend modes (SI Appendix, Fig. S2). Therefore,
even though the tumbling property of DSCG allows for the
formation of wedge disclinations (44), twist-type defects are
dominant in pressure-driven flow. To further quantify the preva-
lence of pure-twist disclination loops, we determine the local
winding of the director field along the loop, which is character-
ized by the twist angle β between the rotation vector Ω and the
local tangent vector t of a disclination loop (Fig. 3D, Inset). A
value of β=π/2 denotes a local twist winding; a value of β= 0
or π denotes a local ±1/2 wedge winding (55). For a pure-twist
disclination loop, the distribution of β is a delta function with
β=π/2 everywhere along the loop. A wedge-twist disclination
loop, by contrast, is characterized by a β that continuously varies
from 0 to π and back to 0 upon one full revolution around the
loop (see SI Appendix, text and Fig. S3 for details). The distribu-
tion of β measured for the disclination loops emerging in the flow
of DSCG solutions exhibits a peak at β=π/2, as shown in Fig.
3D, which reveals that pure-twist disclination loops are indeed
prevalent compared to wedge-twist disclination loops. This is
further evidenced by the finding that the rotation vector Ω is
almost uniformly parallel to the loop normal N (SI Appendix, text
and Fig. S4). The emergence of pure-twist disclination loops is
a consequence of the smallness of the twist Frank elastic con-
stant, which favors the local buildup of twist distortions in the z
direction, from which the loops nucleate (30, 44, 64).

The pure-twist disclination loops form at the boundary
between two regions of irreconcilable director alignments: Close

to the two channel walls, the directors are aligned in the shear
plane, while in a region at the center of the channel the directors
adopt a log-rolling state, as shown in Fig. 3E. Due to the high
stored energy in the director gradient at the interface between
these two frustrated regions, the elastic stress is released by form-
ing topological defects. This complex director field within the
channel gap results from the tumbling character of DSCG and
the nonuniform shear rate across the gap; DSCG is in a log-
rolling state below a critical shear rate γ̇c , but rotates toward the
shear plane above γ̇c (44, 54), as schematically shown in Fig. 3F.

To understand the transition to a different regime of flow
structures at lower shear rates, we note that twist deforma-
tions can, a priori, lead to two types of topological defects: twist
walls aligned parallel to the xy plane, and pure-twist disclina-
tion loops (55, 64). The energy required to form a twist wall
is Etwist wall≈ 0.4Lwb

√
−α2K2γ̇, where Lw is the length of the

twist wall, K2 ≈ 0.4 pN is the twist Frank elastic constant, and
α2 ≈ − 1.66 Pa·s is the Leslie viscosity coefficient for 13 wt%
DSCG solutions (59) (see SI Appendix for details). The energy
required to form a pure-twist disclination loop is Epure-twist =
π
4
K2Lp ln(L

a
) (64), where Lp and L are the perimeter and the

diameter of a pure-twist disclination loop, respectively, and a
is the diameter of the defect core in the nematic phase, which
we estimate to be approximately 0.1 µm. Pure-twist disclination
loops rather than twist walls form when Epure-twist <Etwist wall; this
condition is reached for a critical shear rate γ̇∗ ≈ 0.8 s−1. Con-
sidering the nonuniform shear rates across the thickness of the
channel, twist walls become negligible when the shear rate in
the center region [within a nematic coherence length ≈ a (30)]
reaches 0.8 s−1, which corresponds to a critical average shear
rate ¯̇γ∗= γ̇∗b

12a
≈ 4 s−1. This value indeed denotes the onset of

the intermediate shear rate regime in Fig. 2B.

Characteristic Size and Aspect Ratio of Pure-Twist Disclination Loops.
Having established the emergence of pure-twist disclination
loops in the range of intermediate average shear rates now
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allows us to rationalize the observed power-law dependence
of L ∝ γ̇

−0.19. To do so, we consider the nucleation forces
and annihilation forces acting on the loop. The nonuniform
twist deformation across the gap favors the nucleation; the
viscous force imposed by the flow acts to annihilate the nucle-
ated defects. The energy input to nucleate N pure-twist discli-
nation loops is En =NEpure-twist. Simulations have determined
that the number of nucleated twist defects at a given time
induced by shear flow scales as N ∝ (Er−Erc)

0.5 (65), where
Erc is the critical Ericksen number above which defects nucle-
ate and Er = η2γ̇b

2

K2
is the Ericksen number that governs the

nucleation of twist-type defects. We here set (Er−Erc)
0.5≈

Er0.5, as we focus on the range where Er�Erc. This then
yields the nucleation energy per unit volume as en =En/Λ∝
1
Λ

(
η2γ̇b

2

K2

)
0.5K2Lp ln

(
L
a

)
, where Λ is a control volume. The anni-

hilation of pure-twist disclination loops is driven by the viscous
force and resisted by the elasticity, and can be expressed as the
sum of the viscous forces and the elastic forces in a control
volume Λ: fa = 1

Λ

(∫
η2γ̇dS +K2

)
, where

∫
dS ∝L2 is the area

occupied by a twist loop of size L. For our range of intermedi-
ate average shear rates, Er� 1, indicating that viscous effects
dominate, thus fa ∝ η2γ̇L

2

Λ
. Balancing the nucleation and anni-

hilation forces, den
dL

+ fa = 0, gives an expression for the average
characteristic size of the disclination loops:

L∝
(
K2

η2

)0.25

b0.5γ̇
−0.25

. [1]

This scaling argument indeed yields a power-law exponent for
γ̇ fairly close to that observed in experiments, L ∝ γ̇

−0.19. The
characteristic loop size is thus governed by a balance between the
nucleation force and the annihilation force acting on the loop.

We can likewise understand the aspect ratio of the pure-twist
disclination loops, Lx/Ly ≈ 1.8 ± 0.3, as being due to the asym-
metric elastic deformation that results from the nonnegligible
splay-bend anisotropy of DSCG. We consider the aspect ratio
to be dominated by the elastic relaxation related to the deforma-
tion of the director field at the boundary of the disclination loop.
This is a justified assumption given that the timescales related
to the loop fluctuations induced by the viscous torque are much
shorter than those characterizing the elastic deformation. The
director field within the plane of a pure-twist disclination loop
is described by n = (cos θ cosϕ, cos θ sinϕ, sin θ), where θ= 0◦.
The director field outside the loop is uniform and predominantly
along the x direction, so that ϕ is a small angle close to 0◦.
Inside the loop, the director field is likewise uniform, but ϕ >
0. With these assumptions, and realizing that the deformation at
the boundary of a pure-twist disclination loop along the x direc-
tion involves bend deformations, while that along the y direction
involves splay deformations, the nematodynamic equation (30,
64) along the x direction then reads as follows (see SI Appendix
for details):

K3
∂2ϕ

∂x2
+K2

∂2ϕ

∂z 2
= γ1

dϕ

dt
, [2]

and along the y direction:

K1
∂2ϕ

∂y2
+K2

∂2ϕ

∂z 2
= γ1

dϕ

dt
, [3]

where γ1 is the rotational viscosity, ∂
2ϕ
∂x2 ∝ 1

Lx
2 , ∂

2ϕ
∂y2 ∝ 1

Ly
2 , and

∂2ϕ
∂z2 ∝ 1

b2 . We interrogate the characteristic length scales in the
x and y directions related to the spatial gradient of the director
field within a certain time window. The time scales related to the
elastic deformation in the x and y directions then scale as ∆tx ∝

γ1(
K3
Lx 2 +

K2
b2

) and ∆ty ∝ γ1(
K1
Ly2 +

K2
b2

), respectively. With K1,K3�

K2 (5), this simplifies to ∆tx ∝ γ1Lx
2

K3
and ∆ty ∝ γ1Ly

2

K1
. At steady

state, ∆tx = ∆ty , which yields the following:

Lx

Ly
≈
√

K3

K1
= 1.9. [4]

The value of 1.9 is in good agreement with the experimentally
determined value of 1.8 ± 0.3.

Dynamics of Pure-Twist Disclination Loops. Our single-shot imag-
ing technique PSIM allows us to resolve the dynamics of the
pure-twist disclination loops. We calculate the normalized spa-
tiotemporal autocovariance, Ct , which contains the coupled
information of two contributions: the fluctuations of the discli-
nation loops characterized by a fluctuation time τ1 and the
translation of the disclination loops imposed by the background
flow characterized by a translation time τ2. To remove the
contribution from the background flow, we need to place our-
selves in the frame of reference of the disclination loop. In
this Lagrangian framework, we move the region of interest by
∆x =Vf ∆t at each time lag ∆t , where Vf is the velocity of the
frame of reference. Only if Vf is equal to the center of mass
velocity of the disclination loop, V ∗, we access the fluctuations.
In our pressure-driven flow, the flow velocity varies across the
thickness of the channel. As the location of the pure-twist discli-
nation loops within the channel is unknown, V ∗ is unknown. We
thus calculate Ct for different frame of reference velocities, as
shown in Fig. 4A for Vf equal to the average velocity across the
channel V̄ , and determine the characteristic time τ by fitting to a
stretched exponential function (details on the fit and fit parame-
ters are provided in SI Appendix, text and Table S2). The relation
between the fluctuation time τ1, the translation time τ2, and the
characteristic time τ can be expressed as follows (see SI Appendix
for details):

1

τ
=

1

τ1
+

1

τ2
, [5]

where 1
τ2

=
|V ∗−Vf |

Lx
with Lx the characteristic length scale along

the x direction. This expression indeed well describes the depen-
dence of τ−1 on Vf /V̄ , as shown in Fig. 4B for different
flow rates. The frame of reference velocity Vf at which τ−1

reaches a minimum denotes the center of mass velocity, V ∗,
which is between 1.1 and 1.4V̄ . This indicates that the discli-
nation loops are located in the bulk flow rather than near the
channel walls, in agreement with our simulations. Fitting τ−1

with Eq. 5 yields the fluctuation time τ1 and the character-
istic length scale along the x direction, Lx , as shown in Fig.
4C. The agreement between Lx from this fit and Lx from the
normalized spatial autocovariance validates our approach. The
fluctuation time τ1 scales as 1/¯̇γ. To understand this dependence,
we consider the nematodynamic equations for the director field
n = (cos θ cosϕ, cos θ sinϕ, sin θ). Given the high Ericksen num-
ber regime of our experiments, we here neglect the elastic
contributions (30, 64):

γ1 cos θϕ̇=−α2 sin θ sinϕγ̇, [6]

γ1θ̇= (α2sin2θ−α3cos2θ) cosϕγ̇, [7]

where α2 and α3 are the Leslie viscosity coefficients, and γ1 is
the rotational viscosity. We account for the tumbling character of
nematic DSCG solutions by considering small out-of-plane per-
turbations θ1 and in-plane perturbations ϕ1 for directors aligned
perpendicular to the flow direction: θ= θ1 and ϕ= π

2
+ϕ1.
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Fig. 4. Dynamics of pure-twist disclination loops. (A) Normalized spa-
tiotemporal autocovariance for different flow rates q, for a frame of
reference velocity Vf equal to the average velocity V̄ . The lines denote
stretched/compressed exponential fits. (B) Inverse characteristic time, τ−1,
versus Vf/V̄ for different flow rates q. The dashed lines denote best fits
to Eq. 5. (C) The fluctuation time τ1 decreases linearly with the average
shear rate. The black line denotes τf ≈ 3

4
γ1√

−α2α3

1
¯̇γ

. (Inset) Comparison

between Lx from fitting τ−1 (♦) and Lx from fitting the normalized spatial
autocovariance (�).

Linearizing Eqs. 6 and 7 in terms of these perturbations yields
a characteristic fluctuation time of the tumbling nematics: τf ≈
3
4

γ1√
−α2α3

1
γ̇

(see SI Appendix for details). Using α2≈− 1.66

Pa·s and α3 ≈ 0.03 Pa·s (59), we observe a good agree-
ment with τ1 from our experiments, as shown by the black line
in Fig. 4C. This shows that the fluctuations of the pure-twist
disclination loops are a direct reflection of the tumbling dynamics
of the director.

Conclusions
Our studies reveal the emergence of pure-twist disclination loops
in a range of intermediate shear rates in pressure-driven flow

of nematic DSCG solutions. The disclination loops form at the
boundary between two regions of irreconcilable director align-
ments. Their nucleation releases the high elastic stresses of
the director gradient at the boundary, which induces twist-type
defects because of the low elastic cost associated with the twist
mode compared to splay and bend modes in DSCG solutions.
By controlling the shear rate, we can tune both the size and the
dynamics of the pure-twist disclination loops, which could pro-
vide guidelines for using flowing LCLCs to guide the assembly
of active matter or particles (18). We demonstrate the power
of PSIM in unraveling fluctuations of defects, which may also
enable investigations of the dynamics of other nonequilibrium
systems, including active nematics or turbulent elongated cells
(55, 66, 67).

Materials and Methods
Experimental Methods. We dissolve DSCG (TCI America; purity > 98.0%) at
13.0 wt% in deionized water. The sample is sealed in a glass tube and
heated until it reaches the isotropic phase, indicated by a turbidity change
from turbid to transparent. The sample is subsequently cooled to room tem-
perature (22.5± 0.5 ◦C), where it is in the nematic phase (59, 60). The
rectangular microfluidic channel consists of two glass plates separated by
6.5± 1 µm spacers. To ensure a well-controlled initial condition of the
liquid crystal, we use a protocol of surface rubbing, which induces a pla-
nar alignment of DSCG along the direction of the flow, where both glass
plates are rubbed along the cell length direction using diamond particles of
diameter ≈ 50 nm (68).

After injecting the sample in the microfluidic channel, we allow it to
relax for 1 h, until it appears black when imaged through crossed polar-
izers, where one polarizer is placed parallel to the channel direction. The
flow is controlled by a syringe pump (Harvard PHD 2000) set to a volumet-
ric flow rate q ranging between q = 0.07–25 µL/min. Once the flow has
reached steady state, we image the sample at the center line of the chan-
nel at a frame rate of 506 frames per second in a 250× 250 µm2 region
far from the inlet (20–30 mm) to avoid artifacts due to the injection proto-
col. At the lowest flow rate (0.07 µL/min), we start the measurement 40–50
min after the onset of flow. At intermediate flow rates (0.1–0.5 µL/min), we
start the measurement after 15–20 min. At higher flow rates (1–25 µL/min),
we start the measurement after 5–10 min. These times are well within the
steady-state regime, as determined in additional experiments.

Numerical Methods. We adopt a hybrid lattice Boltzmann method to simu-
late the pressure-driven flow of nematic DSCG solutions. This method has
been used in prior studies of passive and active lyotropic nematics (16, 37,
69–71). The nematic is described by a symmetric and traceless tensorial order
parameter, defined as follows (64):

Q = S(nn− I/3), [8]

where S is the scalar order parameter, n is the unit vector representing the
local nematic orientation, and I is an identity tensor. The governing Beris–
Edwards equation of the nematic microstructure (9) reads as follows (72):

(∂t + u · ∇)Q− S(W, Q) = ΓH, [9]

where u is the velocity vector and Γ is related to the rotational viscos-
ity of the nematic γ1 via Γ = 2S2

0/γ1, with S0 the equilibrium scalar order
parameter. The generalized advection term S(W, Q) is defined as follows:

S(W, Q) = (ξA +Ω)(Q + I/3) + (Q + I/3)(ξA−Ω)

− 2ξ(Q + I/3))Tr(QA),
[10]

where A = (∇u + (∇u)T )/2 is the strain rate tensor, Ω= (∇u− (∇u)T )/2
is the vorticity, and ξ is a flow-alignment parameter. Here, we choose
ξ < 3S0/(2 + S0) to enter a flow-tumbling regime (73). The molecular field
H is a symmetric, traceless projection of the functional derivative of the free
energy of the nematic. Its index form reads as follows:

Hij =
1

2

(
δF

δQij
+

δF

δQji

)
−
δij

3
Tr

(
δF

δQij

)
, [11]

in which the free energy functional is F =
∫

V fdV . The density f consists
of a short-range Landau–de Gennes component and a long-range elastic
component (74):

6 of 9 | PNAS
https://doi.org/10.1073/pnas.2108361118

Zhang et al.
Structures and topological defects in pressure-driven lyotropic chromonic liquid crystals

D
ow

nl
oa

de
d 

at
 M

IT
 L

IB
R

A
R

IE
S

 o
n 

A
ug

us
t 2

6,
 2

02
1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2108361118/-/DCSupplemental
https://doi.org/10.1073/pnas.2108361118


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

Fig. 5. Schematic diagram of polarized shearing interference microscopy (PSIM). The filter is a bandpass filter centered at wavelength 633 nm with
bandwidth 10 nm.

f =
A0

2

(
1−

U

3

)
QijQij −

A0U

3
QijQjkQki +

A0U

4
(QijQij)

2

+
1

2
L1Qij,kQij,k +

1

2
L2Qjk,kQjl,l

+
1

2
L3QijQkl,iQkl,j +

1

2
L4Qjk,lQjl,k,

[12]

where A0 and U are material constants, Qij,k denotes ∂kQij , and L1 to L4 are
related to the Frank elastic constants through the following (71):

L1 =
1

2S2
0

[
K2 +

1

3
(K3−K1)

]
,

L2 =
1

S2
0

(K1−K24),

L3 =
1

2S3
0

(K3−K1),

L4 =
1

S2
0

(K24−K2),

[13]

where K1, K2, K3, and K24 denote the splay, twist, bend, and saddle-splay
Frank elastic constants, respectively. Eq. 9 is solved using a finite difference
method.

The hydrodynamic flow is governed by a momentum equation (73, 75, 76):

ρ(∂t + uj∂j)ui = ∂jΠij + η∂j
[
∂iuj + ∂jui + (1− 3∂ρP0)∂γuγδij

]
, [14]

where ρ is the density, η is the isotropic viscosity, and P0 = ρT − f is the
hydrostatic pressure with T being the temperature. The additional stress
accounting for the nematic anisotropy is defined as follows (73, 75, 76):

Πij=− P0δij − ξHik

(
Qkj +

1

3
δkj

)
− ξ

(
Qik +

1

3
δik

)
Hkj

+ 2ξ
(

Qij +
1

3
δij

)
QklHkl

− ∂jQkl
δF

δ∂iQkl
+ QikHkj −HikQkj.

[15]

Eq. 14 is solved simultaneously via a lattice Boltzmann method over a
D3Q15 grid (75). The simulation is performed in a rectangular box [X, Y , Z] =

[150, 150, 50] in simulation units with periodic boundary conditions in the
x and y directions, and no-slip and planar anchoring condition in the z
direction. A body force g∈ [2.5× 10−5− 5× 10−5] is applied to generate
a pressure-driven flow. Additional details on this method can be found
in ref. 76. Typical simulation parameters are Γ = 0.1, η= 0.33, A = 0.01,
U = 3.5 corresponding to S0∼ 0.62, ξ= 0.6 giving rise to α3/α2 =−0.08,
and [L1, L2, L3, L4] = [0.01, 0, 0.03247, 0.01333] leading to K1 : K2 : K3 : K24 =

1 : 0.33 : 3 : 1.

PSIM. The optical design of PSIM is based on the combination of off-
axis shearing interferometry and circular polarization microscopy, as shown
in Fig. 5. A supercontinuum laser serves as the illumination source with
center wavelength at 633 nm set by a bandpass filter with a 10-nm
pass band. The excitation is transmitted through a quarter waveplate
to produce circular polarization light before impinging on the birefrin-
gent sample. The scattered light is then collected by a microscope and
transmitted through a second quarter wave plate to transform the elec-
tric field’s polarization states back to linear polarization. The electric
field component parallel and perpendicular to the slow axis of the quar-
ter wave plate encode specimen birefringence information. To quantify
the ratio of these two electric field components, the image is dupli-
cated by a diffraction grating, each polarization component is selected
by a linear polarizer at the Fourier plane, and they are recombined after
a linear polarizer set at 45◦ to form an interferogram on the CMOS
camera.

In the interferogram, interference fringes will only appear in the region
that has birefringent signals. The retrieval of the optical retardance is thus
related to the extraction of the interference fringe’s amplitude. Similar
to quantitative phase microscopy (77), we extract the amplitude of the
retrieved +1 order E, along with the amplitude of the DC term A from
the interferograms with a digital holography algorithm. The retardance Γ

is extracted as follows:

Γ = sin−1
(

2E

A

)
. [16]

This straightforward polarization parameter retrieval algorithm avoids the
amplification of noise while quantitatively mapping the retardance from a
single interferogram.

During image processing, we down-sample each frame by a factor of 10
(1,200× 1,200 pixels to 120× 120 pixels) to reduce the data size. This signifi-
cantly increases the processing speed, but negligibly affects the information
retrieved from the images as the down-sampled pixel size is still comparable
to the diffraction limit (the diffraction limit is 1.54 µm, the down-sampled
pixel size is 2.08× 2.08 µm2). The time interval between two consecutive
frames is 1.97 ms.

Data Availability. All study data are included in the article and/or supporting
information.
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74. M. Ravnik, S. Žumer, Landau-de Gennes modelling of nematic liquid crystal colloids.
Liq. Cryst. 36, 1201–1214 (2009).

75. C. Denniston, D. Marenduzzo, E. Orlandini, J. M. Yeomans, Lattice Boltzmann algo-
rithm for three-dimensional liquid-crystal hydrodynamics. Philos. Trans. R. Soc. Lond.
A Math. Phys. Eng. Sci. 362, 1745–1754 (2004).

76. R. Zhang, T. Roberts, I. S. Aranson, J. J. de Pablo, Lattice Boltzmann simulation of
asymmetric flow in nematic liquid crystals with finite anchoring. J. Chem. Phys. 144,
084905 (2016).

77. Y. Park, C. Depeursinge, G. Popescu, Quantitative phase imaging in biomedicine. Nat.
Photonics 12, 578–589 (2018).

Zhang et al.
Structures and topological defects in pressure-driven lyotropic chromonic liquid crystals

PNAS | 9 of 9
https://doi.org/10.1073/pnas.2108361118

D
ow

nl
oa

de
d 

at
 M

IT
 L

IB
R

A
R

IE
S

 o
n 

A
ug

us
t 2

6,
 2

02
1 

https://doi.org/10.1073/pnas.2108361118

