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Fingering versus stability in the limit
of zero interfacial tension
Irmgard Bischofberger1, Radha Ramachandran1 & Sidney R. Nagel1

The invasion of one fluid into another of higher viscosity in a quasi-two dimensional geometry

typically produces complex fingering patterns. Because interfacial tension suppresses

short-wavelength fluctuations, its elimination by using pairs of miscible fluids would suggest

an instability producing highly ramified singular structures. Previous studies focused on

wavelength selection at the instability onset and overlooked the striking features appearing

more globally. Here we investigate the non-linear growth that occurs after the instability has

been fully established. We find a rich variety of patterns that are characterized by

the viscosity ratio between the inner and the outer fluid, Zin/Zout, as distinct from the most-

unstable wavelength, which determines the onset of the instability. As Zin/Zout increases, a

regime dominated by long highly-branched fractal fingers gives way to one dominated by

blunt stable structures characteristic of proportionate growth. Simultaneously, a central

region of complete outer-fluid displacement grows until it encompasses the entire pattern at

Zin/ZoutE0.3.
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V
iscous-fingering instabilities, created when a fluid con-
fined between two parallel plates invades another of
higher viscosity, have served for more than half a century

as a prototype for complex pattern formation1. Such unstable
interfaces are important in applications, significantly for sugar
refining, oil recovery, hydrology and carbon sequestration2–6

and much recent work has focused on how to control the
instabilities7–10. Viscous fingering plays a central role in our
understanding of pattern formation in part because it is amenable
to both theory and experiment1,6,11–14. Of particular importance
is the limit where the characteristic finger width, set by the most-
unstable wavelength, lc, approaches zero. In that case, it was
expected that highly ramified fractal structures, similar to
diffusion-limited aggregation, would form15–18.

The most-unstable wavelength derived by Saffman and Taylor1

is governed by a competition between interfacial tension, s, and
stresses that depend on the interfacial velocity, V, and the
viscosity difference between the outer and inner fluids,
DZ�Zout� Zin:

lc ¼ pb
ffiffiffiffiffiffiffiffiffiffi
s

DZV

r
ð1Þ

where b is the gap thickness between the two parallel plates in the
Hele–Shaw cell1. In this analysis, an instability occurs whenever
DZ40.

Lajeunesse et al. studied the small-wavelength limit in
experiments using miscible fluids with negligible interfacial
tension. They reported a complete suppression of the instability
for fluids with DZ40 when the viscosity ratio Zin/Zout was above a
certain threshold value19,20. This result is highly counter
intuitive—it implies that the interface becomes stabilized when
interfacial tension, which is expected to stabilize the interface, is
removed. They further demonstrated that the onset of the
instability at lower viscosity ratio coincides with a change in the
profile of the interface across the gap: in the range of viscosity
ratios where the interface remained stable the profile is quadratic
near its tip, whereas in the unstable regime it is characterized by a
flat shock front19,20.

To account for these experimental observations, Lajeunesse
et al. used the kinematic-wave theory approach21 to describe
analytically the interface profile across the gap. The theory
successfully predicts the transition between a rounded and a
shock profile with decreasing viscosity ratio, with the transition
occurring at Zin/Zout¼ 0.67. While this analysis predicts the
observed profiles across the gap, it does not explain the transition
from stable to unstable displacement in the lateral direction that
appears to be directly related to the formation of the shock front;
why the shock front is seemingly indispensable for the instability
to occur is an open question. In particular, it remains to be
understood why the instability is suppressed in the range
0.67oZin/Zouto1, where the classical Saffman–Taylor analysis
predicts the interface to be unstable.

Both the prediction for the most-unstable wavelength and the
study by Lajeunesse et al. on the threshold for the instability in
miscible fluids concern the onset of the instability. Here we focus
instead on the non-linear regime characterizing the growth of the
instability, and show that a large variety of patterns emerges. Our
studies reveal a previously overlooked control parameter, the ratio
of the viscosities of the inner and the outer fluid, that governs the
large-scale structure of the patterns. In particular, we find at all
values of Zin/Zout that there is a central region of complete
displacement of the outer fluid. This region, which is very small at
small Zin/Zout, grows larger with increasing viscosity ratio until it
comprises the entire pattern. Thus, we show that the two
previously reported regimes, the fractal growth regime of Saffman

and Taylor1 and the regime of complete stability of Lajeunesse
et al., occur at the two extremes of the viscosity ratio spectrum at
low and high viscosity ratio. Close to the boundary to the stable
regime, we identify a novel type of behaviour; here the interface is
initially stable before becoming unstable to small structures that,
once formed, remain stable even though they grow much broader
than the most-unstable wavelength, lc. We show that these
structures exhibit features of a type of growth behaviour very
rarely observed in physical systems, known as proportionate
growth.

Results
Viscosity ratio sets large-scale features of instability. For our
experiments we use a radial Hele–Shaw cell of diameter L¼ 28 cm
with a typical gap spacing of b¼ 254mm. The fluids are injected
through a hole in the centre of one of the plates at a precise flow
rate set by a syringe pump. We investigate the growth of patterns
formed in the small-wavelength limit using pairs of miscible
fluids, where the interfacial tension s is negligible. For large
enough Peclet numbers, where advection dominates over diffu-
sion, the inter-diffusion of the fluids is negligible so that the fluids
remain separated by a well-defined interface20–22. This is the
situation we investigate here. Previous studies have shown that
the most-unstable wavelength of equation 1 is cut off at lcE5b
(refs 19,23), that is it is determined by the smallest length scale of
the system, the plate spacing b. Despite lc being identical for all
our experiments, we find a variety of distinct large-scale
structures, as shown in the series of images in Fig. 1a.
Remarkably, these patterns are set by the ratio of the two
viscosities, in striking contrast to the most-unstable wavelength.

At low Zin/Zout, branched fractals are observed (panel 1 in
Fig. 1a). With increasing viscosity ratio, however, an inner circle
devoid of fingers comprising only the invading fluid appears and
systematically grows larger (panel 2–4 in Fig. 1a). At high Zin/Zout,
this inner circle comprises the entire pattern; the instability is
fully suppressed (panel 5 in Fig. 1a).

To quantify the structures, we define three characteristic
lengths shown in Fig. 1b: an outer radius, Ro, which is the radius
of the smallest circle that encloses the entire fingering pattern, an
inner radius, Ri, which is the radius of the largest circle that fits
inside the region where the outer fluid is fully displaced, and the
finger length, Rf�Ro�Ri. Figure 1c shows three regimes when the
ratio of the finger length to the inner radius, Rf/Ri, is plotted
versus the viscosity ratio, Zin/Zout. Regime I: for Zin/Zouto0.083,
the fingers form a fractal pattern; they elongate and split
repeatedly creating new generations of fingers. Here we find Rf/
Rip(Zin/Zout)� 0.76±0.05. Regime II: for 0.083oZin/Zouto0.33,
after an initial delay period small blunt structures form, which do
not subsequently split. In this regime, Rf/Ri decreases rapidly with
Zin/Zout and approaches zero at the boundary with the stable
regime. Regime III: for Zin/Zout40.33, the interface between the
two liquids is stable on the time and length scale of the
experiments.

The viscosity ratio further determines the interface profile
across the gap in the z-direction. The removal of interfacial
tension allows for three dimensional (3D) structures, ‘tongues’ of
one fluid penetrating into the other19–21,24. In regime III, the tip
of the tongue is rounded as shown in the upper panel in Fig. 1d.
In contrast, the bottom two panels show that at lower viscosity
ratios, the front of the tongue is flat and propagates as a shock
front. These profiles are characteristic of patterns formed in
regimes II and I. The shapes of the tongues agree qualitatively
with the measurements of Lajeunesse et al.19,20 for the miscible
displacement in a linear Hele–Shaw cell in the presence of gravity.
This transition in the profile of the interface at the tongue tip is
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clearly the most striking characteristic of the structure in the z-
direction and corresponds to the position from which Rf and Ri

are determined. Other finer details are present in the structure, as
evidenced by the variety of intensity shadings within the inner
fluid. However, we have not found a qualitative and dramatic
change in this structure that delineates the three regimes we here
identified.

Delayed onset of instability in toe regime. To explore the
transition to the stable regime at high viscosity ratios, we inves-
tigate the temporal evolution in regime II. Here the onset of the
instability is delayed: the interface is initially stable and only later
develops small blunt structures, which we call ‘toes’. The radial
geometry is known to produce a small delay in the onset of the
instability that also depends on the viscosity ratio between the two
fluids11,25. However, the delay calculated from this geometrical
effect leads to an onset radius of only about 1 mm (comparable to
the central injection hole in our plates) and is thus clearly not
responsible for the much larger delay in the toe formation we
observe. In this toe regime, after a delayed onset, Rf/Ri first
increases rapidly and then slows down. The inset of Fig. 2a shows
that both the cross-over between rapid and slow growth and the
magnitude of Rf/Ri depend on Zin/Zout. However, the main panel
in Fig. 2a shows that all data in regime II can be scaled onto a
single curve. The collapse is obtained by normalizing the time with
a characteristic time, tc*, and the size ratio with a characteristic
size ratio, (Rf/Ri)c. In these experiments, we also have varied the
flow rate, q. We can normalize out the overall effect of the flow
rate by defining: tc�tc*/(q1ml/min/q) to account for the different
flow rates used. Upon approaching the boundary to stable
displacement, the instability onset becomes progressively delayed
and the finger growth decreases in magnitude, as shown in
Fig. 2b,c. Both tc and (Rf/Ri)c are independent of q. This confirms
that effects due to diffusion of one liquid into the other are indeed
irrelevant for the observed phenomena.

Features of proportionate growth in toe regime. Remarkably, in
regime II, once a first generation of toes has developed, the
instability is again suppressed; no further splitting is observed,
even though the toe width has grown much larger than 2lcB10b,
where one would expect tip splitting. The regime over which the
interface becomes unstable only once and then grows stably
depends on the flow rate q; as q increases new generations of toes
start to appear at lower viscosity ratios within the duration of the
experiment. For typical flow rates used in the experiments, this
regime comprises the range 0.1oZin/Zouto0.3. We find that
within this range, the pattern evolution exhibits the unusual
features characteristic of proportionate growth.

The most common example of proportionate growth is the
growth of mammals; as a baby mammal grows, different parts of
its body grow at nearly the same rate and thus in direct
proportion to each other. The head also grows but at a somewhat
slower rate. This keeps their overall shapes unchanged. How the
body organizes this synchronized growth is a longstanding
question for biologists. The key features of proportionate growth
are that the growing patterns are composed of distinguishable
structures with sharp boundaries, all of which grow at nearly the
same rate, keeping their overall shapes unchanged. A certain
robustness to external noise is further required. Sadhu and
Dhar26,27 have recently shown that in an abelian sandpile model
proportionate growth comes out naturally from local rules, and
they propose that proportionate growth may be an example of
self-organization. However, examples of proportionate growth in
real physical systems outside the biological world are difficult to
find.

The patterns formed in the toe regime provide a rare physical
(as distinct from biological) example of such a growth process.
We recall that while the toes initially grow faster than the inner
radius Ri, their growth slows down at later times and becomes
almost proportional to the growth of the inner radius; the ratio of
the two distinct length scales becomes only very weakly
dependent on time. In addition, in the proportionate growth
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Figure 1 | Viscosity ratio as control parameter for miscible fingering patterns. (a) Fingering patterns for different viscosity ratios (from left to right):

Zin/Zout¼ 3.07� 10� 3, 3.10� 10� 2, 6.34� 10� 2, 1.23� 10� 1, 3.70� 10� 1. As Zin/Zout increases, the patterns become progressively less branched. The

scale bar, 5 cm. The flow rate is q¼ 1 ml min� 1 and the gap b¼ 254mm. (b) Definition of the three characteristic length scales Ri, Ro and Rf. (c) The

size ratio, Rf/Ri, versus Zin/Zout when Ro¼ 80 mm. Three regimes are identified: a fingering regime characterized by Rf/Rip(Zin/Zout)
�0.76±0.05 (I),

a transition regime where the instability occurs after a delay (II) and a stable regime (III). The solid and dashed lines indicate the phase boundaries.

(d) For miscible fluids, the displacement of the outer fluid by the invading one produces three dimensional tongues in the z-direction across the gap.

Cross-section along the length L of a tongue in each regime. From top to bottom, Zin/Zout¼ 5.26� 10� 1, 2.04� 10� 1 and 1.11� 10� 2. The transition of the

tongues from round to flat coincides with the instability onset.
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regime described above, only one generation of toes develops so
that the first generation of structure does not further split into
new generations. To demonstrate that the patterns are indeed
very similar during the growth process, Fig. 3a shows snapshots
of the pattern at three times (top row) and magnifications of
those same patterns so that they all have the same outer radius in
the image (bottom row). The enlarged images look essentially
indistinguishable. The characteristics of proportionate growth
observed in 2D are further reflected in the 3D. This is shown in
Fig. 3b, where we show the cross-sectional profiles of the toes
reported in Fig. 3a. The shape of the toes across the gap remains
self-similar during the growth process, as evidenced by the
reasonable scaling of the three profiles upon normalization with
the total size of the toe, Lc. The range of sizes over which we
observe proportionate growth in our system corresponds to a
growth of the toes by about a factor of 4 within the duration of an
experiment. This exceeds the factor by which a human typically
grows. We note that our patterns are robust to a certain level of
noise; neither small air bubbles nor tiny filaments deliberately
placed on the glass plates influence the patterns.

Discussion
The remarkably large range of distinct patterns observed in the
small interfacial-tension limit reveals a novel aspect of the
Saffman–Taylor instability beyond the well-studied fingering
onset. In particular, it demonstrates that the efficiency of outer-
fluid displacement is drastically changed by using fluids with
different viscosity ratios as distinct from different viscosity
differences. Strikingly, the viscosity ratio does controls not
merely the rate of pattern growth, but also its very nature.
Indeed, by tuning this single parameter, the system transitions
from fractal growth with characteristics of DLA, where growth
occurs only at the edge of the pattern, to proportionate growth,
where multiple length scales all grow at the same rate preserving
the overall shape.

The significant delay in the onset of the instability with
increasing viscosity ratio is surprising. Indeed, classical stability
analysis arguments developed extensively over the past few

decades predict in the absence of surface tension an onset radius
of the instability that is much smaller than that observed in our
experiments. An evaluation of when the maximal growth rate first
becomes positive leads to a viscosity-ratio-dependent onset radius
between 1b and 4b in the viscosity range of interest (0.166oZin/
Zouto0.5; refs 11,25). This value is smaller than the size of the
central injection hole in our plates and would correspond to
timescales that we could not resolve in our experiments.

Both tc and (Rf/Ri)c exhibit a dramatic variation approaching
the boundary between the stable and unstable regimes, which
suggests a complete elimination of the instability at high viscosity
ratios. Further, the boundary coincides with a change in the 3D
shape of the ‘tongues’ from rounded to flat fronts, as mentioned
previously. Lajeunesse et al.19,20 have shown that in the limit of
long times and zero diffusion, the transition between a smooth
profile and a shock front is analytically predicted to occur at
Zin/Zout|c¼ 0.67. This value is higher than that observed in our
experiments: Zin/Zout|cE0.33. The experiments however cannot
probe the long-time limit. The non-linear growth of the patterns
we have analyzed can only occur once the instability is triggered.
It is important to point out that both the connection between the
shock-front formation and the onset of the lateral instability and
the suppression of any instability (for example, of the kind from
the original Saffman–Taylor analysis) for 0.67oZin/Zouto1
remain to be explained.

That the viscosity ratio is an important control parameter for
determining Rf/Ri can be seen in a simple analysis of pressure
drops after the instability has been fully established (see
Methods). There, we consider two neighbouring channels each
filled with fluids having the same inner and outer viscosities. The
interface between the two fluids is located at different positions
along each channel. At some distance ahead of the leading
interface, the pressure drop is equalized in the two channels. In
that case, the interfaces will move at different velocities that
depend on Zin/Zout. Since the distance at which pressure
equalization occurs can be different in linear or circular
geometries, new experiments in a linear cell should be performed
to see which features we have found in the radial geometry are
robust.
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(b) Characteristic time tc and (c) characteristic size ratio (Rf/Ri)c versus Zin/Zout. Both exhibit a very strong dependence on Zin/Zout at the boundary to the

stable regime.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6265

4 NATURE COMMUNICATIONS | 5:5265 | DOI: 10.1038/ncomms6265 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


An important conclusion can be drawn from this analysis. The
mechanism by which the viscosity ratio controls the growth of
Rf/Ri does not require any 3D effects. This implies that the effect
of the viscosity ratio in setting the large-scale pattern is distinct
from the effect of the viscosity ratio on the shape of the tongue
across the gap. This is confirmed by experiments showing that the
viscosity ratio similarly sets Rf/Ri for immiscible fluids, which do
not display such complex structure in 3D (manuscript in
preparation).

In conclusion, our experiments probe the viscous-fingering
instability using miscible liquids. In this zero interfacial tension
limit, the most-unstable wavelength is minimal, which would
suggest highly unstable behaviour. However, the experiments
show a different outcome with the formation of different types of
large-scale structures. This large-scale aspect of the patterns is
governed by the viscosity ratio between the two liquids and is
independent of the most-unstable wavelength that determines the
onset of the instability locally at the interface. In particular, at
high viscosity ratios a regime of completely stable displacement
exists19,20, showing that the removal of the stabilizing interfacial
tension in fact stabilizes the interface.

Our studies reveal a much richer pattern formation in the
small-wavelength limit than had previously been established in
experiments performed at low viscosity ratios and large pressure
gradients, where the patterns are characterized by highly-
branched fingers with the same fractal dimension df¼ 1.7 as
found in diffusion-limited aggregation16,28–32. In particular, with
increasing viscosity ratio the length of the fingers drastically
decreases and effectively produces a much more efficient
displacement of one fluid by the other. This diversity of
possible patterns can lead to new routes to controlled fluid
displacements with the viscosity ratio between the fluids as a
convenient control parameter.

Methods
Experiments. The miscible fluids used here are mixtures either of water and gly-
cerol or of two mineral oils (Fisher Scientfic). Water and glycerol are miscible in all
proportions, allowing access to viscosities between 1 and 1,350 mPa s. The viscosity
of water–glycerol mixtures changes non-linearly with concentration: at high glycerol
concentrations, a large viscosity change is achieved with very small variation in
chemical composition, substrate wetting or density33. Because of the high viscosities,
the inter-diffusion of the fluids is negligible; thus during an experiment the fluids
remain separated by a well-defined interface20–22. Mineral oil and water–glycerol
mixtures produce identical results, indicating that substrate wetting and chemical
interactions between the liquids do not affect pattern formation.

Our experiments are performed in a Hele–Shaw geometry consisting of two
1.9 cm thick circular glass plates of diameter L¼ 28 cm. The gap between the plates,
b, can be varied between 76 and 1143 mm, and is maintained uniform in an
experiment to within 1–2% by spacers around the perimeter. The liquids are
pumped through a 1.6 mm hole in the centre of the top plate with a syringe pump
(Syringe Pump NE-1010) at constant volumetric flow rates between 0.4 and
40 ml min� 1. The patterns are recorded with a Prosilica GX 3300 camera at frame
rates up to 15 f.p.s.

To measure the profile across the gap, we converted the measured optical
absorption of the dyed inner liquid (brilliant blue G, Alfa Aesar) to liquid thickness.
For the unstable patterns, the cross-section is taken along the middle of a finger.
The tongues formed by the inner fluid are confined to the gap centre. This is
confirmed by experiments where we use an ultraviolet-curable polymeric fluid as
one of our fluids. This allows us to ‘freeze’ the 3D patterns by exposure to
ultraviolet light.

Analysis of pressure drop. Our experiments investigating the large-scale patterns
that form upon invasion of one fluid into another of higher viscosity reveal that the
viscosity ratio Zin/Zout is a control parameter for the global features of the instability
patterns. In particular, we show that Zin/Zout sets the ratio of the finger size to the
size of the inner radius, Rf/Ri.

A simple analysis of the pressure drop in the system after the instability has
been fully established captures the important role of Zin/Zout in governing the
pattern growth. We here consider two neighbouring channels each filled with fluids
of viscosity Zin and Zout, as shown in Fig. 4a,b for a linear geometry and a radial
geometry, respectively. The interface between the two fluids is located at Ro in
channel ‘o’ and at Ri in channel ‘i’. We assume that the pressure is equalized in the
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two channels at a certain distance behind Ri at position rp and at a certain distance
ahead of Ro at position rp�Dp.

For the linear geometry, we can calculate the pressure drop Dp from rp to rp�Dp

in each channel using Darcy’s law34.

DpoðtÞ / ZinVoðtÞ RoðtÞ� rpðtÞ
� �

þ ZoutVoðtÞ rðp�DpÞðtÞ�RoðtÞ
� �

; ð2Þ

DpiðtÞ / ZinViðtÞ RiðtÞ� rpðtÞ
� �

þ ZoutViðtÞ rðp�DpÞðtÞ�RiðtÞ
� �

; ð3Þ
where Vo(t) and Vi(t) are the velocities of the interface in channel ‘o’ and ‘i’,
respectively. The pressure drop is the same in both channels:

DpoðtÞ ¼ DpiðtÞ: ð4Þ
Therefore:

ZinVoðtÞ RoðtÞ� rpðtÞ
� �

þ ZoutVoðtÞ rðp�DpÞðtÞ�RoðtÞ
� �

¼ ZinViðtÞ RiðtÞ� rpðtÞ
� �

þ ZoutViðtÞ rðp�DpÞðtÞ�RiðtÞ
� �

; ð5Þ

VoðtÞ
Zin

Zout
� 1

� �
RoðtÞ�

Zin

Zout
rpðtÞþ rðp�DpÞðtÞ

� �

¼ ViðtÞ
Zin

Zout
� 1

� �
RiðtÞ�

Zin

Zout
rpðtÞþ rðp�DpÞðtÞ

� �
: ð6Þ

This shows that Zin/Zout sets the velocity of the interface in each channel and
therefore the growth of Ro and Ri. Clearly, this description is oversimplified but it
does capture the essential features of how pressure affects the velocity in the
two channels and it directly reveals the importance of Zin/Zout in governing the
large-scale patterns. From a similar analysis the same conclusion can be drawn for
the radial geometry. However, depending on the geometry used the distance over
which the pressure equalizes in the two channels can be different. This highlights
the need for experiments performed in a linear cell to investigate the robustness of
the features observed in our experiments performed in radial cells.
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